翻訳と辞書
Words near each other
・ Generalized integer gamma distribution
・ Generalized inverse
・ Generalized inverse Gaussian distribution
・ Generalized inversive congruential pseudorandom numbers
・ Generalized iterative scaling
・ Generalized Jacobian
・ Generalized Kac–Moody algebra
・ Generalized keyboard
・ Generalized Korteweg–de Vries equation
・ Generalized Lagrangian mean
・ Generalized least squares
・ Generalized lentiginosis
・ Generalized lifting
・ Generalized linear array model
・ Generalized linear mixed model
Generalized linear model
・ Generalized logistic distribution
・ Generalized Lotka–Volterra equation
・ Generalized lymphadenopathy
・ Generalized map
・ Generalized Maxwell model
・ Generalized mean
・ Generalized method of moments
・ Generalized minimal residual method
・ Generalized minimum-distance decoding
・ Generalized Multi-Protocol Label Switching
・ Generalized multidimensional scaling
・ Generalized multivariate log-gamma distribution
・ Generalized Music Plug-in Interface
・ Generalized Newtonian fluid


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Generalized linear model : ウィキペディア英語版
Generalized linear model

In statistics, the generalized linear model (GLM) is a flexible generalization of ordinary linear regression that allows for response variables that have error distribution models other than a normal distribution. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a ''link function'' and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.
Generalized linear models were formulated by John Nelder and Robert Wedderburn as a way of unifying various other statistical models, including linear regression, logistic regression and Poisson regression. They proposed an iteratively reweighted least squares method for maximum likelihood estimation of the model parameters. Maximum-likelihood estimation remains popular and is the default method on many statistical computing packages. Other approaches, including Bayesian approaches and least squares fits to variance stabilized responses, have been developed.
==Intuition==
Ordinary linear regression predicts the expected value of a given unknown quantity (the ''response variable'', a random variable) as a linear combination of a set of observed values (''predictors''). This implies that a constant change in a predictor leads to a constant change in the response variable (i.e. a ''linear-response model''). This is appropriate when the response variable has a normal distribution (intuitively, when a response variable can vary essentially indefinitely in either direction with no fixed "zero value", or more generally for any quantity that only varies by a relatively small amount, e.g. human heights).
However, these assumptions are inappropriate for some types of response variables. For example, in cases where the response variable is expected to be always positive and varying over a wide range, constant input changes lead to geometrically varying, rather than constantly varying, output changes. As an example, a prediction model might predict that 10 degree temperature decrease would lead to 1,000 fewer people visiting the beach is unlikely to generalize well over both small beaches (e.g. those where the expected attendance was 50 at a particular temperature) and large beaches (e.g. those where the expected attendance was 10,000 at a low temperature). The problem with this kind of prediction model would imply a temperature drop of 10 degrees would lead to 1,000 fewer people visiting the beach, a beach whose expected attendance was 50 at a higher temperature would now be predicted to have the impossible attendance value of −950. Logically, a more realistic model would instead predict a constant ''rate'' of increased beach attendance (e.g. an increase in 10 degrees leads to a doubling in beach attendance, and a drop in 10 degrees leads to a halving in attendance). Such a model is termed an ''exponential-response model'' (or ''log-linear model'', since the logarithm of the response is predicted to vary linearly).
Similarly, a model that predicts a probability of making a yes/no choice (a Bernoulli variable) is even less suitable as a linear-response model, since probabilities are bounded on both ends (they must be between 0 and 1). Imagine, for example, a model that predicts the likelihood of a given person going to the beach as a function of temperature. A reasonable model might predict, for example, that a change in 10 degrees makes a person two times more or less likely to go to the beach. But what does "twice as likely" mean in terms of a probability? It cannot literally mean to double the probability value (e.g. 50% becomes 100%, 75% becomes 150%, etc.). Rather, it is the ''odds'' that are doubling: from 2:1 odds, to 4:1 odds, to 8:1 odds, etc. Such a model is a ''log-odds model''.
Generalized linear models cover all these situations by allowing for response variables that have arbitrary distributions (rather than simply normal distributions), and for an arbitrary function of the response variable (the ''link function'') to vary linearly with the predicted values (rather than assuming that the response itself must vary linearly). For example, the case above of predicted number of beach attendees would typically be modeled with a Poisson distribution and a log link, while the case of predicted probability of beach attendance would typically be modeled with a Bernoulli distribution (or binomial distribution, depending on exactly how the problem is phrased) and a log-odds (or ''logit'') link function.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Generalized linear model」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.